Victor N. Datsyuk
  High Performance Computers Department
  Rostov State University
  Rostov-on-Don, 28-54-66

  email: root@rsuss1.rnd.runnet.ru
  Internet: http://rsuss1.rnd.runnet.ru

 
  Aztec example driver

  This program create an MSR matrix corresponding to
  a 7pt discrete approximation to the 3D Poisson operator
  on an n x n x n square and solve it various methods.
  n must be <= 50.


 input number grid point on each direction n = 
                **********************
                Method solve is =cg      
                **********************
                Dimension matrices =  27000   NPROCS =    32
		iter:  190		residual = 8.417737e-13


		Solution time: 5.327474 (sec.)
		total iterations: 190
		scale_flops: 0.000000e+00	iter_flops: 1.333556e+08
		precond_flops: 0.000000e+00	total_flops: 1.333556e+08

		Solver MFlop rate: 25.031681 MFlops/sec.
		Solver processor MFlop rate: 0.782240 MFlops/sec.

  i=           0  x(i)=        1.00000000
  i=       26999  x(i)=    27000.00000000
                **********************
                Method solve is =gmres   
                **********************
                Dimension matrices =  27000   NPROCS =    32
		iter:  553		residual = 9.542542e-13


		Solution time: 26.872881 (sec.)
		total iterations: 553
		scale_flops: 0.000000e+00	iter_flops: 1.611694e+09
		precond_flops: 0.000000e+00	total_flops: 1.611694e+09

		Solver MFlop rate: 59.974725 MFlops/sec.
		Solver processor MFlop rate: 1.874210 MFlops/sec.

  i=           0  x(i)=        0.99999997
  i=       26999  x(i)=    26999.99999998
                **********************
                Method solve is =cgs     
                **********************
                Dimension matrices =  27000   NPROCS =    32
		iter:  119		residual = 7.539097e-13


		Solution time: 6.317644 (sec.)
		total iterations: 119
		scale_flops: 0.000000e+00	iter_flops: 1.447851e+08
		precond_flops: 0.000000e+00	total_flops: 1.447851e+08

		Solver MFlop rate: 22.917582 MFlops/sec.
		Solver processor MFlop rate: 0.716174 MFlops/sec.

  i=           0  x(i)=        1.00000000
  i=       26999  x(i)=    27000.00000000
                **********************
                Method solve is =tfqmr   
                **********************
                Dimension matrices =  27000   NPROCS =    32
		iter:  119		residual = 2.636488e-13


		Solution time: 6.803927 (sec.)
		total iterations: 119
		scale_flops: 0.000000e+00	iter_flops: 1.709193e+08
		precond_flops: 0.000000e+00	total_flops: 1.709193e+08

		Solver MFlop rate: 25.120677 MFlops/sec.
		Solver processor MFlop rate: 0.785021 MFlops/sec.

  i=           0  x(i)=        1.00000000
  i=       26999  x(i)=    27000.00000000
                **********************
                Method solve is =bicgstab
                **********************
                Dimension matrices =  27000   NPROCS =    32
		iter:  126		residual = 8.453235e-13


		Solution time: 6.886447 (sec.)
		total iterations: 126
		scale_flops: 0.000000e+00	iter_flops: 1.566413e+08
		precond_flops: 0.000000e+00	total_flops: 1.566413e+08

		Solver MFlop rate: 22.746314 MFlops/sec.
		Solver processor MFlop rate: 0.710822 MFlops/sec.

  i=           0  x(i)=        0.99999999
  i=       26999  x(i)=    26999.99999999